国立研究開発法人防災科学技術研究所 水・土砂防災研究部門
国立研究開発法人防災科学技術研究所 水・土砂防災研究部門
トップ 一覧 検索 ヘルプ RSS ログイン

Publication List in TOMACS

  • Adachi, A., T. Kobayashi and H. Yamauchi, 2015: Estimation of raindrop size distribution and rainfall rate from polarimetric radar measurements at attenuating frequency based on the self-consistency principle. J. Meteor. Soc. Japan, 93, 359-388.
  • Adachi, A., T. Kobayashi, H. Yamauchi, and S. Onogi, 2011: Detection of convective cells with a potential to produce local heavy rainfalls by a C-band polarimetric radar, Detection of convective cells with a potential to produce local heavy rainfalls by a C-band polarimetric radar. Proc. of SPIE, Remote Sensing of Clouds and the Atmos. XVI, 8177 , doi: 10.1117/12.897807.
  • Adachi, A., T. Kobayashi, H. Yamauchi, and S. Onogi, 2012: Detection of potentially hazardous convective cells with a dual-polarized C-band radar. Proc. of the 9th International Symposium on Tropospheric Profiling, ISBN/EAN: 978-90-815839-4-7.
  • Adachi, A., T. Kobayashi, H. Yamauchi, and S. Onogi, 2013: Detection of potentially hazardous convective clouds with a dual-polarized C-band radar. Atmos. Meas. Tech., 6, 2741-2760.
  • Belair, S. S. Leroyer, N. Seino, L. Spacek, V. Souvanlassy, and D. Paquin-Ricard, 2018: Role and Impact of the Urban Environment in a Numerical Forecast of an Intense Summertime Precipitation Event over Tokyo. J. Meteor. Soc. Japan, 96A (in press).
  • Chandrasekar, V., H. Chen, and B. Philips, 2018: Principles of high-resolution radar network for hazard mitigation and disaster management in an urban environment. J. Meteor. Soc. Japan, 96A,https://doi.org/10.2151/jmsj.2018-015.
  • Cifelli, R., V. Chandrasekar, H. Chen, and L. E. Johnson, 2018: High resolution radar quantitative precipitation estimation in the San Francisco Bay Area: Rainfall monitoring for the urban environment. J. Meteor. Soc. Japan, 96A, https://doi.org/10.2151/jmsj.2018-016.
  • Fujibe, F. 2015: Relationship between interannual variations of extreme hourly precipitation and air/sea-surface temperature in Japan. SOLA, 11, 5-9.
  • Hapsari, R, I, S, Oishi, K, Sunada, E, Nakakita and T, Sano, 2011: Singular Vector Method on Short-Term Rainfall Prediction Using Radar for Hydrologic Ensemble Prediction. Annual Journal of Hydraulic Engineering, 55, 109-114.
  • Hasegawa, K, S, Suzuki, S, Oishi, T, Sano and K, Sunada, 2011: Estimation of rainfall intensity by using X-Band Polarimetric Radar with raindrop falling trajectory. Proceedings of the 34th IAHR World Congress, 2086-2093.
  • Hirano, K., and M. Maki, 2010: Method of VIL Calculation for X-band Polarimetric Radar and Potential of VIL for Nowcasting of Localized Severe Rainfall -Case Study of the Zoshigaya Downpour, 5 August 2008-. SOLA, 6, 89-92.
  • Hirano, K., and M. Maki, 2018: Imminent nowcasting for severe rainfall using vertically integrated liquid water content derived from X-band polarimetric radar. J. Meteor. Soc. Japan, 96A, https://doi.org/10.2151/jmsj.2018-028.
  • Ishihara, M., 2013: Radar Echo Population of Air-mass Thunderstorms and Nowcasting of Thunderstorm-induced Local Heavy Rainfalls. Part 1: Statistical characteristics. Journal Disaster Research, 8, 56-68.
  • Ishihara, M., 2013: Radar Echo Population of Air-mass Thunderstorms and Nowcasting of Thunderstorm-induced Local Heavy Rainfalls. Part II: A Feasibility Study on Nowcasting. Journal Disaster Research, 8, 69-80.
  • Iwai, H., S. Ishii, S. Kawamura, E. Sato, and K. Kusunoki, 2018: Case study on convection initiation associated with an isolated convective storm developed over flat terrain during TOMACS. J. Meteor. Soc. Japan, 96A, http://doi.org/10.2151/jmsj.2017-014
  • Jang, M., D.-I. Lee, C.-H. You, D.-S. Kim, M. Maki, J.-H. Heong, and H. Uyeda, 2012: Quantitative precipitation estimates from radar reflectivity corrected by the SMA method. Atmos. Res., 104, 111-118.
  • Kato, A., M. Maki, K. Iwanami, R. Misumi, and T. Maesaka, 2012: Quantitative Precipitation Estimate by Complementary Application of X-band Polarimetric Radar and C-band Conventional Radar. IAHS Publ. 351, 169-175.
  • Kawabata, T., H.-S. Bauer, T. Schwitalla, V. Wulfmeyer, and A. Adachi, 2018: Evaluation of forward operators for polarimetric radars aiming for data assimilation. J. Meteor. Soc. Japan, 96A, https://doi.org/10.2151/jmsj.2018-017.
  • Kim, D, -S, M, Maki, S. Shimizu and D. -I. Lee, 2012: X-band Dual-Polarization Radar observations of precipitation core development and structure in a multi-cellular storm over Zoshigaya, Japan, on August 5, 2008. Journal of the Meteorological Society of Japan, 90, 701-719.
  • Kim, D.-S. and M. Maki, 2012: Validation of composite polarimetric parameters and rainfall rates from an X-band dual-polarization radar network in the Tokyo metropolitan area. Hydrol. Res. Lett., 6, 76-81.
  • Kobayashi, F, A, Katsura, Y, Saito, T, Takamura, T, Takano and D, Abe, 2012: Growing Speed of Cumulonimbus Turrets. J. Atmos. Electr., 32, 13-23.
  • Kobayashi, F, T, Takano and T, Takamura. 2011: Isolated cumulonimbus initiation observed by 95-GHz FM-CW radar, X-band radar, and photogrammetry in the Kanto region, Japan. SOLA, 7, 125-128.
  • Kobayashi, F., and M. Yamaji, 2013: Cloud-to-Ground Lightning Features of Tornadic Storms Occurred in Kanto, Japan, on May 6, 2012. Journal of Disaster Research, 8, 1071-1077.
  • Maki, M., T. Maesaka, A. Kato, D.-S. Kim, and K. Iwanami, 2012: Developing a composite rainfall map based on observations from an X-band polarimetric radar network and conventional C-band radar. Indian J. Radio & Space Phys., 41, 461-470.
  • Misumi, R., N. Sakurai, T. Maesaka, S.-I. Suzuki, S. Shimizu, and K. Iwanami, 2018: Transition process from non-precipitating cumuli to precipitating convective clouds over mountains: Observation by Ka-band Doppler radar and stereo photogrammetry. J. Meteor. Soc. Japan, 96A (in press)
  • Nakatani, T., R. Misumi, Y. Shoji, K. Saito, H. Seko, N. Seino, S. Suzuki, Y. Shusse, T. Maesaka, and H. Sugawara, 2015: Tokyo Metropolitan Area Convection Study for Extreme Weather Resilient Cities, Bulletin of the American Meteorological Society, Published online, http://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-14-00209.1.
  • Nishiwaki, N., R.Misumi, S.Shimizu, T.Maesaka, K.Iwanami, N.Sakurai, M.Maki, S.Suzuki, A.Kato and A.Yamaji, 2013: Behavior and Structure of Convective Clouds Developing around a Mountainous Area Observed by Stereo Photogrammetry and Ka-Band and X-Band Radars: Case Study of Northern Kanto, Japan. Journal of the Meteorological Society of Japan, 91, 609-626.
  • P.C. Shakti, Misumi R, Nakatani T, Iwanami K, Maki M, Seed AW, Hirano K. 2015. Comparison of rainfall nowcasting derived from the STEPS model and JMA precipitation nowcasts. Hydrological Research Letters 9: 54-60.
  • P.C., Shakti, M. Maki, S. Shimizu, T. Maesaka, D.-S. Kim, D.-I. Lee, and H. Iida, 2013: Correction of reflectivity in the presence of partial beam blockage over a mountainous region using X-band dual polarization radar. J. Hydrometeorol., 14, 744?764.
  • Pereira Filho, A. J., F. Vemado, K. Saito, H. Seko, J. L. Flores Rojas, and H. A. Karam, 2018: ARPS simulations of convection during TOMACS. J. Meteor. Soc. Japan, 96A, https://doi.org/10.2151/jmsj.2018-030.
  • Saito, K., M. Kunii, and K. Araki, 2018: Cloud resolving simulation of a local heavy rainfall event on 26 August 2011 observed in TOMACS. J. Meteor. Soc. Japan, 96A, https://doi.org/10.2151/jmsj.2018-027.
  • Saito, S., K. Kusunoki, and H. Y. Inoue, 2013: A case study of merging of two misocyclones in the TOMACS field campaign area of Tokyo on 26 August 2011. SOLA, 9, 153-156.
  • Sano, T., and S. Oishi, 2018: Observational study on formation of a localized rainfall on a basin with heat and aridity on days of weak synoptic disturbance in summer. J. Meteor. Soc. Japan, 96A,https://doi.org/10.2151/jmsj.2018-012.
  • Sasaki, S., H. Yoneda, T. Yamada, T. J. Yamada, 2015: An Application of Hydrologic Methodology to the Internal Dose calculation: the Intake of Radioactivity on Agricultural Products Derived from Fallout. Journal of Japan Society of Civil Engineers,Ser.B1 (Hydraulic Engineering),59(4), I_49-I_54.
  • Seino, N., R. Oda, H. Sugawara, and T. Aoyagi, 2018: Observations and simulations of the mesoscale environment in TOMACS urban heavy rain events. J. Meteor. Soc. Japan, 96A,https://doi.org/10.2151/jmsj.2018-029.
  • Seko, H., M. Kunii, S. Yokota, T. Tsuyuki, and T. Miyoshi, 2015: Ensemble Forecast Experiments of Tornado Occurring on 6th May 2012 using a nested LETKF system, Progress in Earth and Planetary Science, 2:42, DOI 10.1186/s40645-015-0072-3.
  • Seto, Y., H. Yokoyama, T. Nakatani, H. Ando, N. Tsunematsu, Y. Shoji, K. Kusunoki, M. Nakayama, Y. Saitoh, and H. Takahashi, 2018: Relationships among rainfall distribution, surface wind, and precipitable water vapor during heavy rainfall in central Tokyo in summer. J. Meteor. Soc. Japan, 96A (in press)
  • Shoji Y., 2013: Retrieval of Water Vapor Inhomogeneity using the Japanese Nationwide GPS Array and its Potential for Prediction of Convective Precipitation. J. Meteor. Soc. Japan, 91, 43-62.
  • Shoji Y., H. Yamauchi, W. Mashiko, and E. Sato, 2014: Estimation of Local-scale Precipitable Water Vapor Distribution Around Each GNSS Station Using Slant Path Delay. SOLA, 10, 29-33.
  • Shoji, Y., W. Mashiko, H. Yamauchi and E. Sato, 2015: Estimation of Local-Scale Precipitable Water Vapor Distribution Around Each GNSS Station Using Slant Path Delay: Evaluation of a Severe Tornado Case Using High-Resolution NHM. SOLA, 11, 31-35.
  • Shusse, Y., M. Maki, S. Shimizu, K. Iwanami, T. Maesaka, S. Suzuki, N. Sakurai, R. Misumi: 「Relationship Between Precipitation Core Behavior in Cumulonimbus Clouds and Surface Rainfall Intensity on 18 August 2011 in the Kanto Region, Japan. J. Meteor. Soc. Japan, 93(2), 215-228.
  • Sugawara, H., R. Oda, and N. Seino, 2018: Urban thermal influence on the background environment of convective precipitation. J. Meteor. Soc. Japan, 96A (in press)
  • Suzuki, S.-I., T. Maesaka, K. Iwanami, S. Shimizu, and K. Kieda, 2018: X-band dual-polarization radar observations of the supercell storm that generated an F3 tornado on 6 May 2012 in Ibaraki Prefecture, Japan. J. Meteor. Soc. Japan, 96A, (in press)
  • Yamada, Y.: Characteristics of Wind Fields Derived from the Multiple-Doppler Synthesis and Continuity Adjustment Technique (MUSCAT). J. Meteor. Soc. Japan,91, 559-583.
  • Yoshida, S., R. Misumi, S. Shimizu, T. Maesaka, K. Iwanami, and M. Maki, 2012: Validation of Short-Term Forecasting of Meso-γ-Scale Convective Systems Based on a Cell-Tracking System. Scientific Online Letters on the Atmosphere, 8, 141-144.
  • 関谷直也・安本真也・上田彰・後藤あずみ,2014: デジタルサイネージを活用したXバンドMPレーダ降雨情報の伝達手法の開発とその課題,自然災害科学(33)特別号,27-42.
  • 吉見和紘・山田正・山田朋人,2015:確率微分方程式の導入による降雨流出過程における降雨の不確実性の評価,土木学会論文集B1(水工学),第59巻, No.4, I_259-I_264.
  • 佐野哲也,大石哲,中村高志,砂田憲吾, 2012: X-バンドMPレーダ観測による盆地を囲む山岳斜面での降雨分布と降雨増幅機構の解析. 水工学論文集土木学会論文集B1(水工学) , 68, I_355-I_360.
  • 菅原広史,相曽豪夫,小田僚子,清野直子, 2015: 都市と郊外における日中の大気か熱量の比較.ヒートアイランド学会誌, 10, 1-5.
  • 清野直子,中野辰美,能登美之,大野恭治,2014: ゾンデ飛翔予測プログラムの精度検証とTOMACS観測への適用. 気象研究所研究報告,65,1-14.
  • 石原正仁, 2012; 2008年雑司が谷大雨当日における積乱雲群の振舞いと局地的大雨の直前予測I:3次元レーダーデータによる積乱雲群の統計解析.天気、59,549-561.
  • 石原正仁,2012: 2008年雑司が谷大雨当日における積乱雲群の振舞いと局地的大雨の直前予測II:積乱雲に伴う局地的大雨の直前予測の試み.天気,59, 563-577.
  • 藤部文昭,2014:日本における降水量の極値パラメータの広域分布特性.天気,61,81-90.
  • 八木綾子,稲垣厚至,神田学,藤原忠誠,藤吉康志,2014:相似則に基づいた大気境界層における水平乱流場の分類.土木学会論文集B1(水工学),70巻,4号,I325-330.
  • 八木綾子,瀧本浩史,藤原忠誠,稲垣厚至,藤吉康志、神田学,2012:ドップラーライダー視線方向速度のパターン追跡による2次元風速場の推定.水工学論文集,56,1783-1789.
  • 鈴木靖,増田有俊,守屋岳,真木雅之,前坂剛,清水慎吾,鈴木真一,2010:港湾域の突風災害軽減にむけた強風ナウキャスト手法の開発.土木学会海洋開発論文集,第26巻,873-878.
  • 廣井 慧、横山 仁、中谷剛、瀬戸 芳一、安藤 晴夫、三隅良平、妙中 雄三、中山 雅哉、砂原 秀樹, 2013: 短時間強雨等の局地的極端現象に対する高校生の防災意識向上に向けた気象センサネットワークの活用.情報処理学会論文誌:コンシューマ・デバイス& システム,3(1), 10-20.
  • 齊藤洋一,小林文明,桂啓仁,高村民雄,鷹野敏明,操野年之, 2013: 衛星(MTSAT-1R)ラピッドスキャンデータでみた孤立積乱雲の一生,天気,60,247-260.